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Metabolism is a vital cellular process, and its malfunction is a major
contributor to human disease. Metabolic networks are complex
and highly interconnected, and thus systems-level computational
approaches are required to elucidate and understand metabolic
genotype–phenotype relationships. We have manually recon-
structed the global human metabolic network based on Build 35 of
the genome annotation and a comprehensive evaluation of >50
years of legacy data (i.e., bibliomic data). Herein we describe the
reconstruction process and demonstrate how the resulting ge-
nome-scale (or global) network can be used (i) for the discovery of
missing information, (ii) for the formulation of an in silico model,
and (iii) as a structured context for analyzing high-throughput
biological data sets. Our comprehensive evaluation of the litera-
ture revealed many gaps in the current understanding of human
metabolism that require future experimental investigation. Math-
ematical analysis of network structure elucidated the implications
of intracellular compartmentalization and the potential use of
correlated reaction sets for alternative drug target identification.
Integrated analysis of high-throughput data sets within the con-
text of the reconstruction enabled a global assessment of func-
tional metabolic states. These results highlight some of the appli-
cations enabled by the reconstructed human metabolic network.
The establishment of this network represents an important step
toward genome-scale human systems biology.

constraint based � metabolism � model � systems biology

An individual’s metabolism is determined by one’s genetics,
environment, and nutrition. With the available human

genome sequence and its annotation (1–3), we can hope to
define the human body’s complement of metabolic enzymes. In
addition, numerous metabolic genes and enzymes have been
individually studied for decades, resulting in a collective knowl-
edge base, or ‘‘bibliome,’’ that includes reaction mechanisms and
well characterized interactions. Manual component-by-
component (bottom-up) reconstruction of genomic and bib-
liomic data leads to a biochemically, genetically, and genomically
structured (BiGG) reconstruction (4) that can be mathemati-
cally represented as an in silico model for computing allowable
network states under governing chemical and genetic constraints
(5). The procedure for integrating these diverse data types to
form a network reconstruction and predictive model is well
established for microorganisms (4) and has recently been applied
to mouse hybridomas (6). Such in silico models have enabled
hypothesis-driven biology, including the prediction of the out-
come of adaptive evolution (7–11) and the identification and
discovery of candidates for missing metabolic functions that
were subsequently experimentally verified (12). Because meta-
bolic networks are more complex in mammals than in single-
celled organisms, there is likely to be an even greater opportunity
for the use of computational models to understand the basis of
normal and abnormal cellular function.

Here we present the reconstruction of the global human
metabolic map. Homo sapiens Recon 1 is a comprehensive
literature-based genome-scale metabolic reconstruction that
accounts for the functions of 1,496 ORFs, 2,004 proteins, 2,766

metabolites, and 3,311 metabolic and transport reactions. This
network reconstruction was transformed into an in silico model
of human metabolism and validated through the simulation of
288 known metabolic functions found in a variety of cell and
tissue types. Recon 1 (i) enables the identification of gaps in our
understanding of human metabolism, (ii) facilitates the compu-
tational interrogation of the overall properties of the human
metabolic network, and (iii) provides context for analysis of
‘‘-omics’’ data sets. These examples are described in further
detail herein.

Results and Discussion
Reconstruction and Validation of H. sapiens Recon 1. A well anno-
tated genome sequence is vital for bottom-up reconstruction
because it enables the rapid identification of candidate network
components (4) and the assembly of a preliminary network (13)
that can be used as a starting point for manual curation
[supporting information (SI) Fig. 5]. We used Enzyme Commis-
sion numbers (14) and Gene Ontologies (15) to identify an initial
set of 1,865 human metabolic genes from the November 2004
annotations (Build 35) of Kyoto Encyclopedia of Genes and
Genomes (KEGG) (16), National Center for Biotechnology
Information’s LocusLink (17) [now EntrezGene (18)], and the
H-Invitational Database (19). These genes were mapped to a
rudimentary network of 3,623 metabolic enzymes and 3,673
reactions from KEGG’s LIGAND database and the compart-
mentalized yeast metabolic reconstruction (20). In addition to
establishing initial network scope, LIGAND’s pathway-based
organizational structure also facilitated parallel network assem-
bly. A team of researchers simultaneously curated network
components by evaluation of �50 years of biological evidence
from �1,500 primary literature articles, reviews, and biochem-
ical textbooks. Strict quality control/quality assurance methods
were used throughout the reconstruction (see Materials and
Methods). Manual literature-based reconstruction ensured that
the network components and their interactions were based on
direct physical evidence and reflected the current knowledge of
human metabolism.

Bottom-up reconstructions can be represented mathemati-
cally, enabling the computational interrogation of their proper-
ties (4, 21). We validated the basic functionality of the human
metabolic network by simulating 288 known metabolic functions
in silico (SI Tables 2–4). Like genome sequence assembly and
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annotation, network reconstruction is an iterative process, and
consequently several rounds of iterative gap analysis (i.e., tar-
geted literature searches to identify metabolic reactions that
were missed initially) and comprehensive revalidation were
required to achieve a BiGG database and a high-quality network
reconstruction (SI Fig. 6).

The result of five iterative rounds of reconstruction and
validation is H. sapiens Recon 1 and the first human cellular
process to be comprehensively modeled at this level of detail and
accuracy (Table 1). It was almost entirely constructed from
human-specific data and includes many reactions directly ex-
tracted from the literature that are not described in any chart or
database. Furthermore, Recon 1 represents several hierarchical
levels of detail, namely:

Y Carefully formulated metabolites and reactions, which ac-
count for known reaction stoichiometry, substrate/cofactor
specificity, and directionality, as well as overall conservation
of mass and charge-based metabolite ionization states at
pH 7.2.

Y Full compartmentalization of metabolites in and their ex-
change between seven intracellular locations (cytoplasm, mi-
tochondria, nucleus, endoplasmic reticulum, Golgi apparatus,
lysosome, and peroxisome) and the extracellular environment.

Y Precise Boolean descriptions of gene–protein relationships
such as alternatively spliced variants, protein complexes, and
isozymes.

Y Confidence scores and literature references based on known
biological evidence associated with each gene, protein, and
reaction.

The entire contents of H. sapiens Recon 1 is freely available
in several formats [searchable database, metabolite and reaction

lists, human-specific metabolic maps, stoichiometric matrix, and
Systems Biology Markup Language (22)] at http://bigg.ucsd.edu
and in SI Figs. 7–16 and SI Tables 5–10. We now describe three
applications of Recon 1.

Quantitative Characterization of the Human Metabolic Bibliome Re-
veals an Uneven Knowledge Landscape. Bottom-up reconstruction
of Recon 1 required extensive manual surveys of the primary
literature to evaluate biological evidence associated with each
gene, protein, and reaction. Viewing confidence scores for these
individual components at the system level reveals a global
knowledge landscape with specific ‘‘peaks’’ and ‘‘valleys’’ in our
understanding of human metabolism (Fig. 1). Three categories
of metabolic pathways were identified based on the degree of
characterization of their corresponding reactions.

Category I pathways are those where extensive primary liter-
ature is available. Chondroitin sulfate is a common component
of proteoglycans, which are important in cell adhesion, signaling,
and connective tissue composition. Catabolism of chondroitin
sulfate chains (SI Fig. 15) is a typical example of a Category I
pathway in which nearly all of the enzymes have been biochem-
ically characterized and their corresponding genes have been
identified. However, the initial steps of chondroitin sulfate
catabolism in endosomes (CSBPASEly) and final degradation of
the core tetrasaccharide linkage (LINKDEG2ly) are not well
known (23).

Category II pathways, such as glyoxylate metabolism (SI Fig.
16), have a roughly equal proportion of highly characterized
enzymes and those with moderate biological evidence (see
Materials and Methods). For instance, although the peroxisomal
and mitochondrial degradation of glyoxylate to L-glycine (reac-
tions AGTix and AGTim, respectively) has been extensively
studied, the presence of the glycerate kinase reaction (GLYCK2)
was inferred based on the observation that individuals with
D-glycericaciduria (who lack the enzyme catalyzing this reaction)
cannot further metabolize D-glycerate and excrete gram amounts
of it in their urine (24).

Category III pathways exhibit a wide range of confidence
scores and gene coverage. That some of these pathways have not
been completely elucidated is somewhat surprising, and arguably
these knowledge deficits may not have been comprehensively
identified without a systems approach. For example, the mech-
anism that cycles the end products of vitamin C degradation back
to the glycolytic pathway appear to be poorly understood (SI Fig.
17) despite evidence in human erythrocytes that it may be used
as an energy source (25). Furthermore, although most of ubiqui-
none 10 biosynthesis was inferred from physiological evidence,
there are a few well studied enzymes interspersed in the pathway
(SI Fig. 18). A large number of intracellular transport reactions
are also included in this category, indicating that as a whole they
require considerably more investigation to elucidate precise
mechanistic reactions. Thus, the reconstruction of H. sapiens
Recon 1 has resulted in a comprehensive appraisal of our
knowledge of human metabolism and has led to direct sugges-
tions where further experimental studies are needed (SI Tables
9 and 10).

Singular Value Decomposition (SVD) of the Stoichiometric Matrix
Highlights the Importance of Compartmentalization. Network capa-
bilities are constrained in part by the overall structure of the
stoichiometric matrix (S), which can be analyzed by using
computational approaches (21). SVD (26) can identify the most
influential components of a network. We used SVD to calculate
the effective dimensionality of the human network to assess the
number of network components needed to account for a given
percentage of its structure. The cumulative normalized singular
value spectrum is shown in Fig. 2 and compared with that of
previous reconstructions (20, 27). The human and yeast net-

Table 1. H. sapiens Recon 1 network statistics

Component Number

Genes 1,496
Transcripts* 1,905
Proteins 2,004

Complex-associated reactions* 248
Isozyme-associated reactions* 946

Intrasystem reactions 3,311
Metabolic 2,233
Transport† 1,078

Exchange reactions† 432
Compartment-specific metabolites 2,712

Cytoplasm 995
Extracellular space 388
Mitochondrion 383
Golgi apparatus 279
Endoplasmic reticulum 231
Lysosome 207
Peroxisome 139
Nucleus 90

Citations 1,587
Primary literature 1,378
Review articles 188
Textbooks 21

Validated metabolic functions 288
Knowledge gaps‡ 356

*See Materials and Methods for definitions of transcripts, complexes, and
isozymes.

†Transport reactions refer to intrasystem transport across a boundary
(organellar and plasma membranes), whereas exchange reactions describe
metabolite transport across the system boundary, e.g., into and out of the
extracellular space from the surrounding medium.

‡Number of ‘‘dead-end’’ metabolites only produced or consumed.
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works are considered with and without metabolite compartmen-
talization to evaluate its effect on network complexity. We
observed that the compartmentalized networks have a signifi-

cantly larger effective dimensionality, requiring a larger number
of independent modes to fully describe their contents. For a
functional metabolic model, this result may be interpreted as the
expansion of nonredundant metabolic functionality rather than
simply a division of linear metabolic pathways across various
cellular compartments.

SVD was further applied to demonstrate unbiased systemic
links between the metabolites of Recon 1. To minimize any bias
arising from differing stoichiometric coefficients and lumped
reactions, the metabolite-coupling matrix M (28) was con-
structed and decomposed. The five most dominant modes of the
SVD of M (Fig. 2) are interpreted as independent groups of
interacting metabolites, ordered with monotonically decreasing
importance. These have biologically meaningful interpretations
as currency exchanges, including high-energy phosphate group
transfer (modes 1 and 4), reducing equivalent exchange (mode
2), and sugar transfer (mode 3). Mode 5 is dominated by ions and
water, linking biochemical and mechanical relationships in the
cell by osmotic force balance. Interestingly, these modes are
compartment-specific, highlighting known relationships be-
tween compartments and cellular functions. Collectively, these
observations highlight some of the implications of compartmen-
talization in the human metabolic reconstruction and support
the notion that compartments may function as independent
reaction sets to achieve specific metabolic objectives (29). This
finding reinforces the idea that intracellular compartmentaliza-
tion has functional implications for various metabolites, includ-
ing glutathione (30), amino acids (31–33), cholesterol and bile
acids (34, 35), and sphingolipids (36).

Coupled Reaction Sets Suggest Potential Alternatives to Known Drug
Targets. Recon 1 has also enabled in silico characterization of the
known human metabolic map by using well established con-
straint-based methods that have been applied extensively to
microbial metabolism (37). Coupled reaction sets consist of
reactions that are active together in functional states of a
network (29, 38). Thus, a flux through one reaction results in a
directionally equivalent flux in other reactions in the set. Flux
coupling analysis (39) was used to identify coupled reaction sets
under aerobic glucose metabolic conditions. One of the largest

Fig. 1. Human metabolic knowledge landscape. Colors represent the per-
centage of reactions within a pathway that have a confidence score of 3
(biochemical or genetic evidence), 2 (physiological data or evidence from a
nonhuman mammalian cell), 1 (modeling evidence), or 0 (unevaluated). Met-
abolic pathways (primarily defined by the Kyoto Encyclopedia of Genes and
Genomes LIGAND database) were classified into three categories based on
their level of characterization as detailed in the text.

Fig. 2. Normalized cumulative singular value spectra for H. sapiens, S. cerevi-
siae, and E. coli and dominant metabolite modes. (A) Compartmentalized net-
works have a greater effective dimensionality than their noncompartmentalized
counterparts, requiring a larger number of singular values to completely recon-
struct the network. Each spectrum shows the number of decomposed modes (x
axis) required to reconstruct a given fraction (y axis) of the S matrix’s content. (B)
The first five modes of the human metabolite coupling matrix (38) highlight the
importance of the production and exchange of energy equivalents and the
potentially significant impact of osmotic regulation. c, cytoplasmic; e, extracel-
lular; g, Golgi apparatus; m, mitochondrial.
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of the �250 coupled reaction sets identified under these meta-
bolic conditions involves two branches of cholesterol biosynthe-
sis (Fig. 3A and SI Fig. 19). 3-Hydroxy-3-methylglutaryl-CoA
reductase (Entrez Gene ID 3156), a primary metabolic target of
the antilipidemic class of statin drugs, is in this coupled reaction
set; other members of the set are thus identified as potential
alternative drug targets for treating hyperlipidemia. It has been
proposed that deficiencies in enzymes belonging to the same
functionally coupled reaction set may have similar phenotypes,
and examples of this have been reported for the human mito-
chondria (38). This hypothesis is supported by the example in
Fig. 3B (SI Fig. 20), which depicts a coupled reaction set involved
in the production and transport of glutathione. The Online
Mendelian Inheritance in Man (OMIM) (40, 41) identification
tags associated with the genes encoding glutathione synthetase
(MIM no. 231900; Entrez Gene ID, 2937) and glutamate-
cysteine ligase (OMIM no. 230450; Entrez Gene ID, 2729)
indicate that both deficiencies result in hemolytic anemia. These
examples demonstrate that in silico experiments with these
models provide an analytical approach to studying the causes and
consequences of disease states, which can potentially lead to
insights into new drug treatment targets. The use of functionally
grouped reactions, such as coupled (39) and correlated reaction
sets (42), present a promising approach for the functional
analysis of complex networks with applications in elucidating
causal relationships in the diseases and potentially identifying
new treatment strategies and drug targets (29).

Integrated Analysis of Gene Expression Data Reveals the Effects of
Gastric Bypass Surgery on Skeletal Muscle Metabolism. Recon 1 was
used as a context for interpreting the effects of gastric bypass
surgery on skeletal muscle metabolism. In this study, gene
expression data were acquired from the same patients before and
after bariatric surgery. Consequently, many genetic factors that
might contribute to interindividual differences are not a concern
in this analysis. Published gene expression measurements (43)
were mapped to the reconstructed network by using gene–
transcript–protein–reaction associations (see Materials and
Methods) and visualized on maps of central metabolism and the
electron transport chain (Fig. 4; SI Fig. 21). We observed a
general trend of up-regulated anaerobic metabolism and down-
regulated oxidative phosphorylation after surgery, with many
genes in glycolysis, pentose phosphate pathway, methylglyoxal

metabolism, and oxidative phosphorylation showing subtle but
consistent overall patterns of expression change (SI Tables
11–15). The relative decrease in mitochondrial bioenergetics is
also evident in terms of the smaller number of mitochondrial
reactions in the down-regulated network (SI Fig. 22) and is
consistent with gene expression changes observed in the skeletal
muscle of rhesus monkeys subjected to long-term caloric restric-
tion (44). Comparison of gene expression data in the context of
Recon 1 suggests that 1 year after surgery, patients may still be
feeling the effects of calorie restriction even after weight stabi-
lization. Thus, Recon 1 represents a versatile and effective
integration tool, enabling visualization and analysis of genome-
scale context in the context of a highly curated metabolic
network.

Conclusions
Reconstruction of the global (or genome-scale) human meta-
bolic network in a standardized, quality-controlled, bottom-up
manner is presented. H. sapiens Recon 1 is a BiGG reconstruc-
tion and represents a milestone in human systems biology. It is
a mathematically structured database that enables systematic
studies of the human metabolism and its properties. The recon-
struction process required comprehensive review of the pub-
lished human metabolic knowledge base (i.e., bibliomic data),
and it led to a global quantitative assessment of network
confidence that has highlighted specific areas of limited or poor
understanding, such as intracellular transport of metabolites,
which need further experimental investigation. The formulation
of an in silico model from the reconstruction and initial analysis
of the network structure highlighted the importance of intracel-
lular compartmentalization. Further analyses demonstrated the
potential utility of the model as a tool for discovery and for the
analysis and interpretation of high-throughput data. These ca-
pabilities will likely be critical in elucidating underlying mech-
anisms of disease and identifying treatment strategies by devel-
oping cell-, tissue-, and context-specific models and building
additional layers of complexity (such as gene regulation) into the
framework.

Genome-scale microbial metabolic reconstructions have
been widely used to successfully perform systems analysis to
the point that models resulting from these reconstructions
have become tools for hypothesis driven biological discovery
(4). We expect that this global human metabolic reconstruc-

Fig. 3. Coupled reaction sets involving cholesterol biosynthesis and glutathione production and transport. (A) The cholesterol biosynthesis coupled set includes
all reactions except those shaded in gray. Note that the groups of reactions are not all directly connected and could not be identified by visual inspection alone.
(B) Reactions in the glutathione reaction set were mapped to disease associations by using Mendelian Inheritance in Man identification tags. Deficiencies in
glutathione synthetase (GTHS) or glutamate-cysteine ligase (GLUCYS) both result in hemolytic anemia, supporting the notion that enzyme deficiencies in the
same coupled set may have similar phenotypes. Interference with or decreases in GLUCYS activity is associated with an increased risk of myocardial infarctions
(MI). A high-resolution version of this figure is available in SI Figs. 19 and 20.
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tion will not only become a prototype for other mammalian
reconstructions but will hopefully also enable significant di-
mensions in the study of in human systems biology, some of
which we have described herein. The future promise for
individualized medicine and treatment will need a context to
integrate and analyze data, and models resulting from these
reconstructions can play a significant role in fulfilling this
need. However, the development of cell-type or context-
specific models will require the integration of various types of
data, including transcriptomic, proteomic, f luxomic, and
metabolomic measurements. Recon 1 provides the context for
integration and analysis of these data into predictive models.
For example, the developing field of nutrigenomics requires
significant data integration and analysis to elucidate the
inf luence of the diet on an organism’s transcriptome, pro-
teome, and metabolome (45). Achieving these ambitious goals
will require top–down data sets in conjunction with quanti-
tative bottom-up reconstructions such as H. sapiens Recon 1.

Materials and Methods
Reconstruction Procedure. An initial component list was assem-
bled as described in the text. This list was then divided into eight
metabolic subsets (amino acids, carbohydrates, energy, glycans,
lipids, nucleotides, secondary metabolites/xenobiotics, vitamins,
and cofactors) for independent curation by a team of research-
ers. Putative gene assignments were verified based on evidence
collected from genome annotation databases, namely Entrez-
Gene (18), Gene Cards (46), and the scientific literature. Al-
ternative transcripts were identified based on known RefSeq (17)
mRNA transcripts for each locus. Substrate and cofactor pref-
erences were identified from the literature and BRENDA (47).
Metabolite formula and charge were calculated based on their
ionization state at pH 7.2, which for simplicity was presumed to
be constant across all compartments. Reaction directionality was
determined from thermodynamic data or inferred from legacy
data and textbooks. Compartmentalization was determined
from protein localization data, sequence targeting signals, and
indirect physiological evidence. If these data were unavailable,
reactions were modeled as cytoplasmic. The intermembrane
space of double-membrane organelles was also modeled as
cytoplasmic. Gene–transcript–protein–reaction relationships (5,
6) were manually identified from the literature and formulated
as Boolean logic statements. Isozymes (an ‘‘or’’ relationship)
were defined as distinct proteins that catalyze the same sub-
strate- and compartment-specific reaction and could arise from
one gene due to alternative splicing or could be encoded by
independent genes. Cases in which a reaction depended on the
presence of more than one gene/protein (an ‘‘and’’ relationship,
e.g., proteins with multiple subunits/chains or complexes com-
posed of multiple enzymes) were classified as protein complexes.
Confidence scores were assigned based on biological evidence
associated with each reaction. Evidence from classical biochem-
ical or genetic experiments, such as gene cloning and protein
characterization, was given the highest confidence score (3).
Midlevel scores (2) were assigned to reactions based on physi-
ological data or biochemical/genetic evidence from a nonhuman
mammalian cell (typically mouse, rat, or rabbit). Reactions with
the lowest confidence score (1) were included solely based on in
silico modeling because, during the process of model validation,
they were deemed mandatory for a particular metabolic func-
tion. Transport reactions were entirely reconstructed based on
literature reports and biochemistry textbooks because the cur-
rent annotation of transporters is not sufficiently specific with
regard to substrates and mechanisms.

Functional Validation and Gap Analysis. The reconstruction was
assembled in SimPheny (Genomatica, San Diego, CA), and the
stoichiometric matrix was formulated as described (48). Ex-
change reactions (SI Table 6) were added to enable uptake and
secretion of extracellular metabolites for the purpose of simu-
lations. Functional validation was performed by using flux
balance analysis (39), allowing recycled cofactor pairs to enter
and leave the system as needed (SI Tables 2–4). Comprehensive
gap analysis of the stoichiometric matrix was performed after
each round of functional validation. Every ‘‘dead-end’’ metab-
olite that could not be produced or consumed was manually
reexamined by returning to the literature to identify possible
reactions describing its degradation, production, or transport. A
final round of gap analysis was performed upon completion of
H. sapiens Recon 1, and a description of unresolved gaps is
provided in SI Table 9.

Network Analysis. The singular value spectra (26) were computed
for H. sapiens Recon 1, Saccharomyces cerevisiae iND750 (20), and
Escherichia coli iJR904 (48) as the normalized cumulative sum of
the singular values by using Matlab Ver. 6.5 (MathWorks, Natick,

Fig. 4. Integrated analysis of gene expression data from gastric bypass
patients before surgery and 1 year afterward. Expression measurements were
to reactions in the global human metabolic network and then visualized on
Recon 1’s comprehensive collection of human metabolic maps. Reactions are
color-coded based on their corresponding gene expression changes (green,
down-regulated; red, up-regulated; white, no data available or reaction level
conflict). Arrows next to reaction abbreviations indicate the magnitude of
expression changes on a log10 scale (gray boxes indicate no data available). A
high-resolution version of this figure is available in SI Fig. 21.
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MA). The stoichiometric matrix was not altered or scaled before
SVD. The human and yeast networks were decompartmentalized
by reassigning all intracellular metabolites to the cytoplasm. Modes
were defined as the largest elements (each �0.25�max column
value) of the columns of U (identical to the columns of V), where
U�VT � ˆSˆST and Ŝ is the binary form of S. Noncompartmen-
talized versions of the human and yeast model were created by
summing up the rows of the S matrix corresponding to the same
metabolite in the different intracellular compartments.

Coupled reaction sets were calculated with a bilinear optimi-
zation algorithm described by Burgard et al. (39) by using
LINDO r6.1 (Lindo Systems, Chicago, IL) called from within
Matlab Ver. 6.5 for aerobic glucose uptake conditions. Briefly,
for all of the fluxes in the network under specified input
conditions, if two fluxes always respond in the same manner
(both increase or both decrease) to any perturbation or alter-
native flux distribution, they are said to be coupled.

Gene Expression Analysis. Gene expression data for the gastric
bypass study were downloaded from Gene Expression Omni-

bus (GEO) [GSE5109 (49)]. Expression signals were normal-
ized by the average value for each chip. Log10 ratios of
post/pregastric surgery probe expression signals were calcu-
lated for all three patients in the gastric bypass data set and
mapped to Entrez Gene and RefSeq mRNA identifications
(18) in H. sapiens Recon 1 based on database identifiers in the
Affymetrix (Santa Clara, CA) U133A Plus 2.0 annotation file
(50). Probes whose expression ratio was qualitatively incon-
sistent across all three patients (i.e., not all up or all down) or
that conf licted at the gene level were removed from the data
set. Average gene expression ratios were then mapped to the
reaction network by using Recon 1’s gene–transcript–protein–
reaction associations.
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